
Time-OptimalQubit Mapping
Chi Zhang

∗

chz54@pitt.edu

University of Pittsburgh

USA

Ari B. Hayes

arihayes@gmail.com

Rutgers University

USA

Longfei Qiu

lq56@scarletmail.rutgers.edu

Rutgers University

USA

Yuwei Jin

yj243@scarletmail.rutgers.edu

Rutgers University

USA

Yanhao Chen

chenyh64@gmail.com

Rutgers University

USA

Eddy Z. Zhang

eddy.zhengzhang@gmail.com

Rutgers University

USA

ABSTRACT
Rapid progress in the physical implementation of quantum comput-

ers gave birth to multiple recent quantum machines implemented

with superconducting technology. In these NISQ machines, each

qubit is physically connected to a bounded number of neighbors.

This limitation prevents most quantum programs from being di-

rectly executed on quantum devices. A compiler is required for

converting a quantum program to a hardware-compliant circuit, in

particular, making each two-qubit gate executable by mapping the

two logical qubits to two physical qubits with a link between them.

To solve this problem, existing studies focus on inserting SWAP

gates to dynamically remap logical qubits to physical qubits. How-

ever, most of the schemes lack the consideration of time-optimality

of generated quantum circuits, or are achieving time-optimality

with certain constraints. In this work, we propose a theoretically

time-optimal SWAP insertion scheme for the qubit mapping prob-

lem. Our model can also be extended to practical heuristic algo-

rithms. We present exact analysis results by using our model for

quantum programs with recurring execution patterns. We have

for the first time discovered an optimal qubit mapping pattern for

quantum fourier transformation (QFT) on 2D nearest neighbor ar-

chitecture. We also present a scalable extension of our theoretical

model that can be used to solve large quantum circuits.

CCS CONCEPTS
• Software and its engineering → Compilers; • Hardware →
Quantum computation.

KEYWORDS
Quantum Computing, Qubit Mapping, Noisy Intermediate Quan-

tum Computers, NISQ, Quantum Fourier Transformation, QFT

∗
This work was done when Chi was visiting Rutgers University.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ASPLOS ’21, April 19–23, 2021, Virtual, USA
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8317-2/21/04. . . $15.00

https://doi.org/10.1145/3445814.3446706

ACM Reference Format:
Chi Zhang, Ari B. Hayes, Longfei Qiu, Yuwei Jin, Yanhao Chen, and Eddy Z.

Zhang. 2021. Time-Optimal Qubit Mapping. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’21), April 19–23, 2021, Virtual, USA. ACM,

New York, NY, USA, 15 pages. https://doi.org/10.1145/3445814.3446706

1 INTRODUCTION
Quantum computing is a promising method to speed up important

applications. These applications include factoring large numbers

[14], searching a database [5], and simulating quantum systems [12].

With around 100 reliable qubits, quantum computers can already

solve useful problems that are out of reach for classical computers.

Recently quantum systems with 49-72 qubits have been an-

nounced by IBM, Google and Intel. A number of quantum computers

with around or less than 20 qubits are available to the public [2]

through IBM Q experience. Programmers can run programs on

these quantum computers. Despite the existence of certain tools

such as IBM Qiskit [1], code must be written with respect to low-

level specifications. A complete quantum compiler tool-chain needs

to be built such that programmers can develop quantum algorithms

that take full advantage of the potentially disruptive computing

paradigm without having to worry about low level machine details.

The compilation of a quantum program is decomposed into two

levels of translation. First, it converts an algorithm into a logical

circuit composed of universal gates. These circuits are formulated

independently of the hardware implementation. Second, it converts

a logical circuit into a physical circuit with respect to hardware

constraints. The problems in the first abstraction layer have been

extensively [5, 12, 14] studied by theoreticians. However, less atten-

tion has been paid to the second abstraction layer, which is critical

to the efficient execution of programs on real quantum computers.

Our paper addresses the second level of translation: from a logical

circuit to a hardware-compliant physical circuit. In particular, we

tackle the qubit mapping problem. In realistic architecture, it is

not possible to establish direct interactions between every pair of

qubits. In the superconducting quantum computers, qubits operate

in the nearest neighbor manner, in which direct interactions form

a bounded degree graph. An example is shown in Fig. 1 (a).

However, a logical circuit independent of hardware implementa-

tion assumes an unrestricted architecture, where every two qubits

are connected. A logical circuit must be modified to account for the

coupling constraints in quantum hardware. The common practice

is to dynamically remap logical qubits to physical qubits via SWAP

360

https://doi.org/10.1145/3445814.3446706
https://doi.org/10.1145/3445814.3446706

ASPLOS ’21, April 19–23, 2021, Virtual, USA Chi Zhang, Ari B. Hayes, Longfei Qiu, Yuwei Jin, Yanhao Chen, and Eddy Z. Zhang

gates such that each two-qubit gate is applied to two physically

connected qubits. An example is shown in Fig. 1. If two logical

interacting qubits 𝑞1 and 𝑞4 are respectively mapped to𝑄1 and𝑄4,

one of them has to be “moved" closer to the other. For instance, by

swapping 𝑞2 with 𝑞4, we can move 𝑞4 closer to 𝑞1.

Most previous studies on the qubit mapping problem [8, 16, 17,

20, 22, 23] have focused on gate-optimal solutions. They minimize

the number of inserted SWAP gates. Some [8, 23] enhance the par-

allelism among the inserted SWAP gates while aiming to minimize

the gate count. Zulehner et al. [23] proposed an algorithm using

the A-star paradigm to minimize the number of swap gates for

a local layer of concurrent CNOT gates. Li et al. [8] formulate a

multi-objective function for exploiting the trade-off between dif-

ferent swap insertion strategies. The study by Siraichi et al. [16]
models the swap-insertion problem as a subgraph isomorphism

problem. Wille et al. [20] propose a model for global gate-optimal

mapping using the SAT solver. A number of studies [10, 19] note

the variability of qubit error rates in the IBM quantum computers

and develop variability-aware qubit mapping strategies.

There are very few studies focusing on time-optimal qubit map-

ping. A time-optimal solution minimizes the depth of the entire

transformed circuit rather than the depth or the number of the in-

serted SWAPs. OLSQ [18] is the only study that solves for optimal

depth of the entire circuit. It is based on a constraint solver and

its mapping overhead depends on the how far the optimal depth

is from the ideal depth assuming every two qubits are connected.

The work by Childs et al. [3] forms the foundation of IBM Qiskit’s

qubit mapper, however, it uses a heuristic approach to minimize the

depth of the inserted SWAPs rather than that of the entire circuit.

Lao et al. [7] introduces a framework that considers gate selection,

qubit mapping, and classical control constraints. Their qubit map-

ping heuristic aims to improve the depth of the entire circuit by

overlapping swaps with original gates in the circuit. But it does not

guarantee an optimal mapping solution.

Q1

Q2

Q3

Q4

q1(Q1)

q2(Q2)

q3(Q3)

q4(Q4)

H H X

X

(Q2)

(Q1)

H

X

X

(Q4)

(Q2)

q1(Q1)

q2(Q2)

q3(Q3)

q4(Q4)

q1(Q1)

q2(Q2)

q3(Q3)

q4(Q4)

(a) (b) (c) (d)

Figure 1: (a) Hardware coupling graph, (b) the logical circuit
which cannot run due to qubit coupling constraints, (c) one
possible way to make the circuit executable by swapping𝑄1

with 𝑄2, and (d) another possible way to make the circuit
executable by swapping𝑄2 with𝑄4. Upper case𝑄 represents
a physical qubit while lower case𝑞 represents a logical qubit.

Gate Optimality v.s. Time Optimality. To see why it is impor-

tant to consider the interaction between inserted swap operations

and the original circuit, we use an example in Fig. 1. The original

circuit in Fig. 1 (b) is not executable. The transformed circuits in (c)

and (d) are both gate optimal. However, only one of them is time

optimal. That is because the solution in Fig. 1 (c) inserts a swap

involving the slowest qubit, and as a result delays the execution of

the entire circuit, while the solution in Fig. 1 (d) does not.

A time-optimal solution not only reduces the execution time, but

also improves the reliability of the transformed circuit. It mitigates

the decoherence effect. Qubits are error prone. A qubit decoheres

over time. It gradually lose its state information. The longer a qubit

operates, the less reliable it is. A time-optimal solution minimizes

the impact of decoherence for the qubits in the circuit, and results

in higher fidelity of the circuit as a whole.

Time-optimal qubit mapping is in general challenging. There

are many possible permutations of SWAPs to achieve the same

desired qubit mapping and there are many possible qubit mappings

that can satisfy two-qubit gates in a given circuit. Even properly

modeling the problem is a challenge.

In this paper, we tackle the time-optimal qubit mapping problem.

We first present a simple and effective model for representing the

complete search space. The search space is constructed with respect

to an input logical circuit and a bounded degree hardware coupling

graph. We then propose a search algorithm that is complete and

optimal. Our contributions are summarized as follows:

• We present the first theoretical model for time-optimal qubit

mapping without any implicit constraints. The theoretical

model can be flexibly extended to practical algorithms.

• We present a search framework based on our time-optimal

model. It consists of space pruning, redundancy elimination,

and comparative filtering. It significantly reduces the time

complexity and makes time-optimal search feasible.

• We discovered time-optimal solutions for quantum fourier

transformation (QFT) on both 1D and 2D nearest neighbor

architecture (using our search framework). Our solution for

1D nearest neighbor architecture is the same as a manual

solution reported by Maslov [9]. But our optimal solution

for 2D architecture is for the first time reported. Interested

readers for QFT solutions can refer to Section 6.1.1.

• We present a practical extension of our theoretical model.

It prunes the branches in the search space unlikely to yield

effective mapping solutions. Our practical implementation is

not guaranteed to be optimal, however, it still outperforms

state-of-the-art qubit mappers with speedups ranging from

0.99X to 1.36X, and on average 1.21x, over representative

benchmarks from RevLib, IBM Qiskit, and ScaffCC.

• We implemented our search framework for both optimal and

practical solutions. We open sourced the code at GitHub
1
.

The remainder of the paper is organized as follows. We start by

introducing the background for quantum computing in Section 2.

Section 3 presents a motivating example. Section 4 and 5 provide

our modeling and implementation details. We present experiment

results in Section 6 including both optimal and heuristic results.

Related work is in Section 7. Concluding remarks are in Section 8.

Appendix includes a detailed optimality proof and a discussion on

how to find all optimal solutions when more than one exist.

2 BACKGROUND
2.1 Quantum Gates
There are two types of elementary quantum gates. One is single-

qubit gate, an unitary quantum operation that can be abstracted as

1
Our implementation is made publicly available at the GitHub repository:

https://github.com/time-optimal-qmapper/TOQM.

361

https://github.com/time-optimal-qmapper/TOQM

Time-Optimal Qubit Mapping ASPLOS ’21, April 19–23, 2021, Virtual, USA

the rotations around the axes of the Bloch sphere [11]. The other

type of elementary gate is two-qubit gate.

The controlled-NOT (CNOT) is a very important two-qubit gate

in quantum computation. A CNOT gate operates on a control qubit

and a target qubit. If the control qubit is 0, it leaves the target qubit

unchanged; If it is 1, it applies a NOT gate to the target qubit. The

CNOT gate entangles qubits and enables communication. There

are other types of two-qubit gates, for instance, the iSWAP gate,

the cross resonance (CR) gate, the bMap gate, and etc. All of them

require the two operand qubits to have direct links.

2.2 Qubit Mapping Problem
To execute a quantum circuit on a real machine, logical qubits

must be mapped to physical qubit on the target hardware. When

applying a two-qubit gate, the two participating logical qubits must

be mapped to physically connected qubits. Due to the bounded

degree connectivity of physical qubits on current devices, it is

generally considered impossible to find an initial qubit mapping

that satisfies all two-qubit gates in the entire circuit.

A common practice is to dynamically map the logical qubits by

inserting SWAP gates. A swap gate exchanges the states of the two

operand qubits. There are different ways to implement a SWAP. A

typical way to implement a SWAP is to use 3 CNOT gates if the

links between physical qubits are bidirectional. Our model does not

impose constraints on how a SWAP is implemented. Rather, we set

the latency of a SWAP as a parameter in our model. We use various

SWAP latencies according to the architectures we are evaluating.

The qubit mapping problem takes a logical circuit and a hard-

ware coupling graph as input, outputs a transformed circuit. Only

swap operations are allowed to be added into the transformed cir-

cuit. After transformation, all two-qubit gates must be hardware

compliant. If a two-qubit gate 𝑔 is performed on logical qubits 𝑞1
and 𝑞2, when running 𝑔, 𝑞1 and 𝑞2 must be physically connected.

One logical qubit can be mapped to different physical qubits

at different points of circuit execution. Once a two-qubit gate is

completed, both of its logical qubits can be remapped to some other

physical qubits in the future. An example of qubit mapping is shown

in Fig. 1 (c) and (d).

3 MOTIVATION
It is non-trivial to achieve time optimality for the qubit mapping

solution. As there are many possible permutations of circuit gates

and inserted swaps, the search space is large even for small in-

put. We use quantum fourier transform (QFT) to demonstrate the

challenges in finding a time-optimal solution.

QFT is at the heart of integer factorization [15]. It serves as

the basis for many important quantum algorithms. QFT is also

one of the most challenging benchmarks for qubit mapping. It is

because QFT requires all-to-all qubit connection. Each qubit needs

to interact with every other qubit in the program.

The QFT circuit has a regular pattern. It has 𝑛 qubits and 𝑛(𝑛 −
1)/2 generic two-qubit gates. We follow the convention by Maslov

et al. [9] for describing a QFT skeleton circuit. A concrete QFT

circuit includes Hadamard (H) gates and controlled phase gates.

Following this convention, a single-qubit is absorbed into a nearby

two-qubit gate to form a generic two-qubit gate. Any two-qubit gate

can be efficiently implemented and we assume they have the same

latency as in [9]. Hence the entire circuit is described using generic

two-qubit gates of the same latency. We denote the original two-

qubit computation gate as GT gates for the simplicity of discussion.

Each logical qubit 𝑞𝑖 interacts with every other logical qubit 𝑞 𝑗 ,

denoted as 𝐺𝑇 (𝑞𝑖 , 𝑞 𝑗) where 𝑗 ≠ 𝑖 . The logical QFT circuit with 6
qubits is shown in Fig. 2 (b).

LNN. Let’s look at the simple linear nearest neighbor (LNN)

architecture as shown in Fig. 2 (a), where the capital case 𝑄 repre-

sents physical qubits. In this architecture, the physical qubits are

arranged on a straight line. Each physical qubit only communicates

with the qubit on its left or right. However, the logical QFT circuit

requires each qubit to interact with every other qubit. The logical

circuit in Fig. 2 (b) cannot directly run on Fig. 2 (a) no matter which

initial qubit mapping is used.

Due to the all-to-all qubit interaction pattern in QFT, it is hard

to obtain an effective qubit mapping on LNN, let alone an optimal

solution. Using our search algorithm described in the next section,

we find an optimally transformed QFT-6 circuit. The solution is

shown in Fig. 2 (c). Although the circuit size is small, it is not difficult

to see a butterfly pattern in the transformed circuit represented

using physical qubits.With further analysis in Section 6, this pattern

can generalize to larger QFT circuits and ensure linear depths.

We note that our solution for QFT in LNN is the same as the

manual solution by Maslov [9]. However Maslov [9] cannot find an

optimal solutionmanually for 2D architecture due to the complexity

of the architecture, while our mapper can, as described below.

2D Grid. Another prototypical hardware architecture is a struc-
tured two-dimensional lattice. Each qubit has up to 4 neighbors. For

instance, IBM Melbourne architecture has a 2×N grid like topology,

as shown in Fig. 3. Maslov [9] did not provide a manual solution for

the 2D architecture. But the paper predicts a lower bound depth of

3𝑛 + O(1). Using our algorithm, we found a generalizable pattern

for arbitrary size QFT. Our generalized solution has 3𝑛+O(1) depth
which matches the lower bound depth provided by Maslov [9]. The

asymptotic term is only at the constant component. Hence our

solution is not only confirmed to be optimal for small inputs but

also for arbitrary size inputs. Our solution is presented in Section 6.

Time-optimal solutions, even for small size circuit, could be very

useful. If an optimal solution for a logical circuit has recurring

pattern, we can obtain the optimal solution for small-size inputs,

and use that to deduce the generalized solution. The solutions

to the QFT program on two types of architectures demonstrate

the effectiveness of our algorithm in discovering such patterns for

circuit families. For finding a solution to QFT-6 on LNN, our mapper

takes less than 1 second. For finding a solution to QFT-8 on 2D

architecture, it takes less than 30 seconds. In the following, we will

describe our model and search algorithm in details.

4 TIME-OPTIMAL MAPPING FRAMEWORK
In this section, we define a time-optimal model for the qubit map-

ping problem. We first define the search space. Then we present a

guided search framework. We prove the optimality of the frame-

work in Section 5 and Appendix A.

362

ASPLOS ’21, April 19–23, 2021, Virtual, USA Chi Zhang, Ari B. Hayes, Longfei Qiu, Yuwei Jin, Yanhao Chen, and Eddy Z. Zhang

X

X

SWAP

Two-qubit
Gate

Q0

Q1

Q2

Q3

Q4

Q5

X

X X

X

X

X X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

(a)

q0

q1

q2

q3

q4

q5

(b) (c)

Q0

q0 q1 q2 q3 q4 q5

Q1 Q2 Q3 Q4 Q5

Figure 2: Adapting QFT logical circuit to LNN architecture: (a) 6-qubit LNN and initial mapping, (b) logical qft-6 circuit where
each line represents a logical qubit 𝑞𝑖 , and (c) physical qft-6 circuit where each line represents a physical qubit 𝑄𝑖 . The last
swap gate in red in (c) is added for showing the symmetric pattern. Our solver does not have the swap in its returned solution.

Q8 Q12Q10 Q14

Q11 Q13Q9 Q15

Q0 Q2

Q5

Q6Q4

Q7Q1 Q3

Figure 3: 2×N Qubit Coupling Graph

4.1 Search Space
We discover that any valid execution of a circuit can be partitioned

into a sequence of states. We refer to cycle as a unit of time. A circuit

is decomposed with respect to its state at each cycle. A state of the
circuit represents a qubit mapping and the specific busy/idle status

of each qubit. The status of a qubit is represented as which gate it

is executing if the qubit is busy, or which gate it has just completed

if the qubit is idle. An example is shown in Fig. 4 (a).

1 2 3 4 5

q1
g1

g2
g6

q2 g3 g4 g5

q3 swap(3,5)

q4
q5 swap(3,5) g5

A B C D E

(a) (b)

R

A

B
C

D

E

………..
…

…
…

…

Figure 4: (a) Cycle-by-cycle partition of a 5-cycle circuit, (b)
the search path representing the execution in (a). R is the
root node. E is a terminal node.

We define our search graph. Each node in the search graph

represents a state of the circuit (which also includes a cycle number).

A node expands into one or multiple children nodes. Each child

node represents a possible state the circuit will be in at the next

cycle. A child node’s cycle number is its parent’s cycle number + 1.

The executing gate(s) of a child node in its own cycle must satisfy

the constraints of the qubit coupling and gate dependence.

By enumerating all possible combinations of gates and swaps in

next cycle, a node can determine its complete set of child node(s).

The circuit makes progress when a gate in the original circuit

executes. The circuit updates its qubit mapping when an inserted

SWAP finishes its execution.

//////////////////////

Equivalent Snodes
A.mapping = B.mapping

Snode A Snode B

Cycle = 15 Cycle = 15

Snode A Snode B

Cycle = 16 Cycle = 10

Snode A = Snode B B is better than A

X

Y

Z

Y

Z

Y Y

X XX

Z Z

(a) (b)
/////// : SWAP gate

q1

q2

q3

q1

q2

q3

q1

q2

q3

q1

q2

q3

Comparative Snodes
A.mapping = B.mapping

: regular gate

Figure 5: Filtering example (a) Two equivalent search nodes.
Both A and B will finish the same number of original gates.
They also have achieved the same mapping assuming all ac-
tive swaps immediately take effect. But the order of the gates
is different. (b) The two state nodes will have to take dif-
ferent number of cycles to achieve the same state. But B is
faster, A can be safely pruned without affecting optimality.

Root Node and Terminal Node. We let the root node be the initial
state of the circuit at cycle 0 where all qubits are idle and no gate

in the original circuit has been scheduled.

We say a node is terminal, if all logical qubits have completed

their gates in the original circuit, and the last gate of all just finished

at the cycle of this node.

The goal is to find a terminal node such that its path to the root

node is the shortest. There is only one root node but there could be

more than one terminal node. An optimal solution corresponds to

an optimal terminal node. The path from the root node to a terminal

node represents a transformed circuit.

Fig. 4 (b) shows a valid path from the root node to a terminal node.

It corresponds to the example circuit in Fig. 7 and the execution in

Fig. 4 (a). The node E is a terminal node, and R is the root node.

4.2 Guided Search Framework
Since there is a finite number of gates and physical qubits, there

is only a finite number of combinations of gates and swaps that

can be executed simultaneously at any given moment. Thus each

node in the search graph has only a finite number of child nodes.

An exhaustive breadth-first search (BFS) algorithm is guaranteed to

find the optimal terminal node in finite time. However, BFS search

is not realistic as it is brute-force and search space is large even

when the input is small.

363

Time-Optimal Qubit Mapping ASPLOS ’21, April 19–23, 2021, Virtual, USA

Node Expander

Initialize
Priority Queue

Extract  
from PQ

Coupling
Constraint

Dependency
Constraint

Redundancy
Elimination

Comparative
Analysis

Equivalence
Checking

Compute
Cost

Result

Expanding Filtering

Not A
Terminal?

Push into PQ

A terminal?

Figure 6: Our Optimal Search Framework

Overview of Our Framework. We present a guided search frame-

work. It uses a priority queue to keep track of the nodes that need

to be expanded. We show our framework in Fig. 6. It first initializes

the priority queue to be empty and then inserts the root node into

the priority queue.

Next it extracts a node from the priority queue, expands it, and

push new nodes into the queue. The three steps repeat until a

terminal node is for the first time popped out of the priority queue.

It is based onA* search. Each node is associatedwith a priority (cost).

We set the priority (cost) function to be admissible to ensure the

the A* search returns an optimal solution. The detailed definition

of the priority function and the proof for optimality is shown in

Section 5 and Appendix A.

Using A* guarantees optimality. We also ensure efficiency by

space pruning techniques. It is often possible that the circuit reaches

the same state using different combinations of gates and swaps. If

the only difference between two nodes is their timestamps, then

the slower one of the two nodes can be dismissed without affecting

optimality. We prune these nodes in the Expanding component and

the Filtering component in Fig. 6.

Expander. The node expander is responsible for expanding the
node extracted from the priority queue. After expansion, the chil-

dren nodes of the expanded nodeswill be collected.We apply several

restrictions on top of these children nodes. Below are the criteria

that we want these children nodes to meet:

• Coupling One node needs to satisfy the current qubit cou-

pling constraints. Thus we first filter out the nodes that

cannot satisfy coupling constraint.

• Dependency The gates scheduled in a child node should

also have their dependency resolved. This means all parent

gates of any newly added active gate should be finished prior

to the child node’s cycle.

• Redundancy Check We check two kinds of redundancy.

First we check that whether at least one active gate of the

child node depend on some gate in the parent node’s active

gates (except that the active gate is the first gate on a qubit).

This criteria is based on the fact that any non-depending

gate in the child node could have been placed earlier in the

parent’s sibling nodes.

Second we check if there are cyclic swaps, which means

identical swaps applied consecutively to the same two qubits.

It does nothing but cancel out the previous swap effect.

Filter. We have a filtering pass on the expanded nodes that meet

the criteria we listed above. In this filtering pass, every expanded

node has its hash value calculated based on its current qubit map-

ping (assuming all active swaps have taken effect). For each node,

we look at its hash value and compare it to all the previous nodes (in

the priority queue) that have the same hash value. When comparing

one expanded node with all the previous nodes that have the same

hash value, we check for equivalence and relative goodness.

• Equivalence Check We check if this expanded node is

equivalent to any previous node. Equivalence means the

two nodes will have finished the same set of gates assuming

all active gates have taken effect. The active gates on same

qubits will finish in the same exact cycle. The current cycle

must be the same. If we find this equivalence, we filter out

this expanded node. An example is shown in Fig. 5 (a).

• Comparative Analysis If there’s no equivalence found, we
then switch to comparative analysis between the expanded

node and the previous node with same hash value. We look

at the projected finish cycle on each qubit (if the qubit is

busy). If, for all qubits, the expanded node has fewer finished

gates but longer projected finishing time, we know that this

expanded node is less desirable than this previous node. We

then filter out this expanded node as itself and its sub-tree

will not lead to a better solution than one previous node. An

example is shown in Fig. 5 (b).

5 OPTIMALITY GUARANTEE
5.1 Admissible Cost Function
We assign each search node 𝑣 in the search graph a cost 𝑓 (𝑣). The
cost 𝑓 (𝑣) consists of two parts 𝑔(𝑣), ℎ(𝑣) such that

𝑓 (𝑣) = 𝑔(𝑣) + ℎ(𝑣) (1)

𝑔(𝑣) represents the length of the path from the root node to 𝑣 , which

is the number of cycles already executed. ℎ(𝑣) is a heuristic cost
function as a lower bound on the number of cycles from 𝑣 to any

terminal node.

The circuit now contains two parts with respect to a search node

𝑣 : (1) the part that has been scheduled due to 𝑣 and 𝑣 ’s ancestor

nodes, and (2) the remaining circuit that hasn’t been scheduled. The

cost 𝑔(𝑣) is for part (1), and cost ℎ(𝑣) is for part (2). An example is

shown in Fig. 7.

The cost for part (1) is trivial as a search node contains a time

stamp. The cost ℎ(𝑣) for part (2) is more complex.

364

ASPLOS ’21, April 19–23, 2021, Virtual, USA Chi Zhang, Ari B. Hayes, Longfei Qiu, Yuwei Jin, Yanhao Chen, and Eddy Z. Zhang

1 2 3 4 5
q1

g1
q2
q3
q4
q5

q1

q2

q3

q4

q5

g2

g3 g4

g1 g5 g6

(a) Circuit (c) Entire Dependence graph

g3

g2

g6

g5
g4

g1

(b) State S
Induced Dependence Graph

Figure 7: Two components of a circuit with respect to a search node: (a) logical circuit, (b) a search node S for cycle 1 indicating
already scheduled gates by cycle 1, and (c) the dependence graph, where the part after the dashed line is remaining circuit to
be executed.

Our heuristic function ℎ(𝑣) is defined with respect to the depen-

dency graph 𝐺𝑟𝑒𝑚 and the qubit mapping 𝜋𝑟𝑒𝑚 of the remaining

circuit. If the node 𝑣 contain any active swap that hasn’t been com-

pleted, we assume swap has taken effect for calculating 𝜋𝑟𝑒𝑚 . As it

is not difficult to obtain remaining dependence graph from search

node 𝑣 and 𝑣 ’s ancestor nodes, we omit the details here.

Let𝐺𝑟𝑒𝑚 = (𝑉𝑟𝑒𝑚, 𝐸𝑟𝑒𝑚) be the dependency graph of the gates in
the remaining circuit. Thus 𝑉𝑟𝑒𝑚 consists of the gates that haven’t

been scheduled or have been scheduled but executed in part, and

𝐺𝑟𝑒𝑚 is a directed acyclic graph. We define the heuristic function

ℎ(𝑣) via induction on 𝐺𝑟𝑒𝑚 .

Let𝑔1, 𝑔2, · · · , 𝑔𝑛 be a topological ordering on the vertices (gates)

in 𝐺𝑟𝑒𝑚 . For each gate 𝑔,let 𝑙𝑒𝑛(𝑔) be the number of cycles that 𝑔

needs to execute (if 𝑙𝑒𝑛(𝑔) is partially executed, 𝑙𝑒𝑛(𝑔) is equal to
the length of the unexecuted part). We will define 𝑡𝑚𝑖𝑛 (𝑔), which
is a lower bound on the time when 𝑔 begins to execute.

Base case: If 𝑔𝑖 is a single-qubit gate that has no predecessors

in 𝐺𝑟𝑒𝑚 , then 𝑡𝑚𝑖𝑛 (𝑔𝑖) = 0, meaning, 𝑔𝑖 may begin to execute

immediately.

Inductive case: Suppose gate 𝑔𝑖 depends on gate ℎ1, ℎ2, · · · , then
𝑔𝑖 can only begin after these gates have finished. First let 𝑢 =

max𝑖 𝑡𝑚𝑖𝑛 (ℎ𝑖) + 𝑙𝑒𝑛(ℎ𝑖). We must have 𝑡𝑚𝑖𝑛 (𝑔𝑖) ≥ 𝑢. If 𝑔𝑖 is a

single-qubit gate, then we simply take 𝑡𝑚𝑖𝑛 (𝑔𝑖) = 𝑢.

If 𝑔𝑖 involves two qubits, then we also have to consider the delay

caused by inserting SWAP gates. Suppose that gate 𝑔𝑖 involves

qubits 𝑞𝑎 and 𝑞𝑏 . Let 𝐻𝑎 be the set of gates (in 𝐺𝑟𝑒𝑚) that involve

𝑞𝑎 and are direct or indirect predecessors of 𝑔𝑖 . Similarly we may

define the set 𝐻𝑏 . Let𝑇𝑎 be the sum of the number of cycles needed

by the gates in 𝐻𝑎 . Then 𝑢 −𝑇𝑎 represents the “slack” space that

may be used by qubit 𝑞𝑎 to perform SWAPs. Similarly we define𝑇𝑏 .

Now, in the current qubit mapping 𝜋𝑟𝑒𝑚 , let 𝑑 (𝑎, 𝑏) be the short-
est distance between qubit 𝑞𝑎, 𝑞𝑏 . Then we need at least 𝑑 (𝑎, 𝑏) − 1
SWAPs in total on qubit 𝑞𝑎 with some other qubit, and on 𝑞𝑏 with

some other qubit. We are only concerned with the delay on 𝑞𝑎 and

𝑞𝑏 but not the delay on the qubit which they have SWAP with. Sup-

pose we place 𝑟 SWAPs on 𝑞𝑎 and 𝑠 SWAPs on 𝑞𝑏 , then the delay

on 𝑞𝑎 is max{𝑟 · 𝑙𝑒𝑛(𝑆𝑊𝐴𝑃) − (𝑢 −𝑇𝑎), 0}, and the delay on 𝑞𝑏 is

max{𝑠 · 𝑙𝑒𝑛(𝑆𝑊𝐴𝑃) − (𝑢 −𝑇𝑏), 0}. We have 𝑟 + 𝑠 ≥ 𝑑 (𝑎, 𝑏) − 1. We

let 𝑟 + 𝑠 = 𝑑 (𝑎, 𝑏) − 1 as it will not increase the cost, and enumerate

all possible combinations of (𝑟, 𝑠) with 𝑟 = 0 . . . 𝑑 (𝑎, 𝑏) −1. We take

the pair (𝑟, 𝑠) that minimizes the larger of the two delays. Let 𝑢 ′ be
the minimized delay, then we take 𝑡𝑚𝑖𝑛 (𝑔𝑖) = 𝑢 + 𝑢 ′.

Definition 5.1.1. (Heuristic cost function ℎ(𝑣)) Having computed
𝑡𝑚𝑖𝑛 (𝑔) for each gate 𝑔, we define the heuristic cost ℎ(𝑣) to be

ℎ(𝑣) = max
𝑔∈𝑉𝑟𝑒𝑚

𝑡𝑚𝑖𝑛 (𝑔) + 𝑙𝑒𝑛(𝑔)

Cost Calculation Example. An example of calculating the cost

function with respect to a CNOT gate is shown in Fig. 8. The state

node 𝐹 we focus on is in Fig. 8 (a), where it has already scheduled

the 𝑔1 and started 𝑆𝑊𝐴𝑃 𝑄4, 𝑄5. We assume each single original

gate in the circuit takes 1 cycle and each swap takes 3 cycles.

The remaining dependency graph of the circuit is shown in Fig.

8 (c). Since 𝑔1 is completed, 𝑠45 has executed in part,𝐺𝑟𝑒𝑚 consists

of the remaining gates and part of 𝑠45. First we set 𝑡𝑚𝑖𝑛 (𝑔2) =

𝑡𝑚𝑖𝑛 (𝑔3) = 0 as they have no predecessors. 𝑡𝑚𝑖𝑛 (𝑠45) is also 0.

Then 𝑡𝑚𝑖𝑛 (𝑔4) = 1 as it depends on the single-cycle gate 𝑔3.

The qubit mapping 𝜋𝑟𝑒𝑚 after gate 𝑠45 is shown in Fig. 8 (b). 𝑔5
is not immediately executable, as 𝑞2 and 𝑞5 are not adjacent to each

other. The shortest path between them is 𝑄2 → 𝑄3 → 𝑄4 with a

distance of 𝑑 = 2. Now at least 𝑑 − 1 = 1 total SWAP needs to be

inserted in total on 𝑞2 with some other qubit, and on 𝑞5 with some

other qubit.

Suppose 𝑔5 could be executed immediately, then it would have

got start time as 𝑢 = 2. On the part of qubit 𝑞2, gate 𝑔5 depends on

𝑔3 and 𝑔4, 2− 2 = 0, so there’s no slack space on 𝑞2. On the part of

qubit 𝑞5 the predecessor is part of 𝑠45, which is 2 cycles. Therefore,

the slack space on qubit 𝑞5 is 0 cycle too. Hence 𝑡𝑚𝑖𝑛 (𝑔5) = 2 + 3 =

5, as inserting SWAP on either 𝑞2 or 𝑞5 introduces a delay of 3.

Finally, 𝑡𝑚𝑖𝑛 (𝑔6) = 6 since 𝑞1, 𝑞2 are adjacent, and the cost for

search node F is 8.

Another example is for the search node A in Fig. 8 (e) where 𝑔1
and 𝑠𝑤𝑎𝑝 (3, 5) is scheduled in cycle 1. The induced qubit mapping

is in Fig. 8 (f). Since each CNOT in remaining circuit can be imme-

diately executed, the cost of 𝐴 is the critical path of the remaining

circuit plus 1, which is 5. Therefore search node A is better than

search node F as its cost is lower.

Common Fallacy. It is tempting to assume that, since two

qubits can move towards each other by performing SWAPs simulta-

neously, the optimal position for two qubits to meet is always at ex-

actly the middle of the shortest path between them. Hence one may

simply need to insert dummy gates of length (𝑑−1) ·𝑙𝑒𝑛(𝑆𝑊𝐴𝑃)/2.
This is not true as it is oblivious to the slack in the original cir-

cuit that can potentially absorb SWAP overhead. An example is

demonstrated in Fig. 9. Here we assume that, in the initial mapping,

365

Time-Optimal Qubit Mapping ASPLOS ’21, April 19–23, 2021, Virtual, USA

 s45

g3

g2

g6g5g4

1 2 3 4 5
q1

g1
q2
q3
q4

swap(4, 5)
q5

max tmin (gi) + len(gi) = 7

(a) Search node F (c) Remaining circuit marked with tmin

Q1 Q2

Q3

Q4 Q5

q1 q2

q3

q4q5

(b) 𝜋 for node F

X

X

q1 (Q1)

q2 (Q2)

q3 (Q3)

q4 (Q4)

q5 (Q5)

g2

g3 g4

g1 g5 g6

Q4

Q5

(d) Circuit Representation

0

0

0 1

5 6
1 2 3 4 5

q1
g1

q2
q3 SWAP(3, 5)
q4

swaq5 SWAP(3, 5)

(e) Search node A

Q1 Q2

Q3

Q4 Q5

q1 q2

q3q4

q5

(f) 𝜋 for node A

Figure 8: Cost calculation (a) Search node F, (b) qubit mapping for remaining circuit induced by F, (c) remaining dependency
graph marked with 𝑡𝑚𝑖𝑛 , and (d) circuit representation; (e) search node 𝐴, (f) qubit mapping for remaining circuit induced by
A.

(a) (b)

g1 g2 g3 g4
CNOT

SWP SWP

SWP SWP

g1 g2 g3 g4 g1 g2 g3 g4
CNOT

SWP SWP

SWP

SWP

(c)

Figure 9: An example circuit, demonstrating a common fal-
lacy in reasoning about the heuristic function. (a) Logical
circuit, assuming that the distance between the two qubits
is 5. (b) The dependency graph of the circuit, if we choose to
place 1 SWAP on the first qubit, and 3 SWAPs on the second.
(c) The dependency graph of the circuit, if we choose to in-
sert two swaps on each qubit. Assuming each SWAP takes 2
cycles and each original gate takes 1 cycle in this example.

the distance between the two qubits is 5, so at least 4 SWAPs are

needed. Suppose we let the two qubits meet in the middle. Assume

a SWAP takes 2 cycles. Then we need to insert a 4-cycle delay for

each qubit. The length of the critical path is 8 cycles. However, sup-

pose we let the first qubit do 1 SWAP, and let the second qubit do 3

SWAPs. Then the length of the critical path becomes 6 cycles. This

demonstrates the necessity of trying all possibilities of splitting

delay to two participating qubits when calculating the cost.

5.2 Optimality
Our heuristic cost function ℎ(𝑣), in effect, computes a lower bound

on the time needed by the remaining circuit through two differ-

ent ways, and takes the larger of the two bounds. The first way

considers the immediate predecessors of each gate. The second

way considers the indirect predecessors and potential SWAPs. We

prove rigorously it is a lower bound time of the remaining circuit

in Appendix through Lemma A.1. We relegate the details to the

Appendix.

Lemma 5.1. The cost function defined in Eq. 1, 𝑓 (𝑣) = 𝑔(𝑣) + ℎ(𝑣)
is admissible.

Proof. We’ve shown in Lemma A.1 that the heuristic function

ℎ(𝑣) never overestimates the execution time of the remaining circuit.

And also g(v) is the number of cycles already executed till node 𝑣 .

Therefore the cost function 𝑓 (𝑃) is admissible. □

Theorem 5.2. The A-star search algorithm we proposed here is
complete and optimal.

Proof. It has been shown that A-star search will find an optimal

solution if the problem satisfies the following conditions:

(1) Each node in the search graph only branches into a finite

number of child nodes. This is true, because the set of gates

that can possibly execute at any given moment is finite.

(2) Each transition increases the cost of the path. This is true

for our problem, because each gate takes at least one cycle

to execute, and so increases the cost by at least 1.
(3) The heuristic cost function is admissible. This is proven in

the lemma above.

Thus our algorithm satisfies all conditions for optimality. □

5.3 Initial Mapping
Our optimal mapper works in two different modes: (1) It finds an

optimal solution given an input initial mapping, and (2) It finds

both optimal initial mapping and the transformed circuit.

For (1), it is trivial. Our previous technical description already

addressed how to find the solution after initial mapping is given.

For (2), we start with a random initial mapping. Then we allow at

most 𝑑 consecutive cycles of pure swaps before any original gate

is scheduled, which represents a search for initial mapping. In the

meantime, we modified our cost function such that the pure swap

cycles at the beginning are not counted, as if the circuit starts at

some initial mapping resulted from these consecutive pure swap

cycles. The parameter 𝑑 is defined as the maximum of the longest

path (without going through any node twice) between any two

qubits in the physical architecture. It is because one mapping layout

could be transformed into another mapping layout with at most the

number of cycles equivalent to the maximum longest path length

in the graph, assuming swaps on disjoint qubits run in parallel.

For the pure swap cycles, our hash filter is also applied, ensuring

that no unique initial mapping will appear twice in the priority

queue. It is because one initial mapping can be achieved through

different ways of swap combinations.

.

6 ANALYSIS
6.1 Exact Analysis
When the number of qubits is small, our algorithm can find (a set

of) exact optimal solution(s). This is helpful in the applications

366

ASPLOS ’21, April 19–23, 2021, Virtual, USA Chi Zhang, Ari B. Hayes, Longfei Qiu, Yuwei Jin, Yanhao Chen, and Eddy Z. Zhang

(a) (b)

Loop representation:

 for k = 1 to 2n-3

 forall i = 0 to ⌈k/2⌉ - 1

 if (0 ≤ i < n && i < k-i <n)

 GT(q[i], q[k - i]);

Figure 10: (a) QFT-6 circuit rearranged to exploit parallelism;
(b) Affine loop representation of re-arranged n-qubit circuit.

where optimal solution has a recurring pattern. We use a two-step

approach. We first find optimal solution(s) for small inputs. Then

we generalize the solution(s) to larger inputs. We demonstrate it

using QFT program in Section 6.1.1. We also show the optimal

results for small logical reversible circuits in Section 6.1.2.

6.1.1 Optimal QFT Mapping. Recall that QFT has a regular struc-

ture, with 𝑛 qubits and 𝑛(𝑛− 1)/2 generic two-qubit gates (Section

3). QFT has an all-to-all qubit interaction pattern. Every two qubits

need to interact. The QFT circuit with 6 qubits is shown in Fig. 2.

We present a different representation of the QFT circuit in Fig. 10

(a) to facilitate discussion. As gates that operate on non-intersecting

qubits commute, a QFT program can run in linear depth if the

underlying architecture is fully connected. Fig. 10 (a) is equivalent

to the circuit in Fig. 2 (b) except that it is organized into parallel

layers such that each layer consists of concurrent two-qubit gates,

and the affine loop representation is shown in Fig. 10 (b).

LNN Architecture. Recall that in LNN, the physical qubits are

arranged on a (conceptual) straight line, and each qubit may only

interact with the qubit on its left or right. For QFT, the logical qubits

are initially mapped according to its natural order such that logical

qubit 𝑞0 is mapped to the leftmost physical qubit and 𝑞5 is mapped

to the rightmost physical qubit as shown in Fig. 11 (step 0).

The LNN architecture is often considered as a good approxima-

tion to what a scalable quantum architecture may be. If a circuit

can be adapted well to LNN, it typically can be adapted to other

architectures represented by a bounded degree graph [9].

Our search algorithm finds an optimal solution
2
for QFT with

6 qubits, visualized in Fig. 11. We next show that the discovered

pattern for 6-qubit QFT can be generalized to n-qubit QFT.

The qubit mapping changes every two consecutive steps (from

step 0). In every two consecutive cycles, a set of GT gate(s) first

operate on some qubits, then a set of swaps on exactly the same

qubits. At the end of these steps, the layout of the logical qubits

are reversed such that 𝑞5 is placed at the left end of the LNN, and

𝑞0 is placed at the right end of the LNN. Each qubit first shifts to

left until it hits the left end of the LNN, and then to right until it

reaches its destination.

To generalize this, we assume a sequence of logical qubits on

the chain at a cycle𝑚 where𝑚 is even and𝑚/2 is also even, and

2
There might be multiple optimal solutions, but not all of them have a recurring

pattern. However, our algorithm can be adapted to find all optimal solutions such that

the solution with recurring pattern can be easily obtained. On the other hand, even

some solutions do not have a strict recurring pattern, but the pattern can be inferred

by performing some transformation based on gate commutativity or cancel-able swaps.

We demonstrate this in Appendix B.

q0 q1 q2 q3 q4 q5

q0 q1 q2 q3 q4 q5

q0q1 q2 q3 q4 q5

q0q1 q2 q3 q4 q5

q0q1 q2 q3 q4 q5

q0q1 q2 q3 q4 q5

q0q1q2 q3 q4 q5

q0q1q2 q3 q4 q5

q0q1q2 q3 q4 q5

q0q1q2 q3 q4 q5

q0q1q2q3 q4 q5

q0q1q2q3 q4 q5

q0q1q2q3 q4 q5

q0q1q2q3 q4 q5

q0q1q2q3q4 q5

q0q1q2q3q4 q5

q0q1q2q3q4 q5

Two-qubit gate:
SWAP:

step(0)

step(1)

step(2)

step(3)

step(4)

step(5)

step(8)

step(7)

step(6)

step(9)

step(10)

step(11)

step(12)

step(13)

step(14)

step(16)

step(15)

q0q1q2q3q4 q5
step(17)

Figure 11: QFT-6 on LNN. Step (17) is not necessary. We are
adding it to show the pattern.

we let 𝑖 =𝑚/2, the qubit placement from left to right is

𝑞 𝑖
2
, 𝑞 𝑖

2
+1, 𝑞 𝑖

2
−1, 𝑞 𝑖

2
+2,, 𝑞𝑖 , 𝑞0, 𝑞𝑖+1, 𝑞𝑖+2, 𝑞𝑖+3, 𝑞𝑖+4,, 𝑞𝑛−1

At the step 𝑚, it is a parallel computation stage of two-qubit

gates. We have GT(𝑞0, 𝑞𝑖+1), GT(𝑞1, 𝑞𝑖), ..., GT(𝑞 𝑖
2
, 𝑞 𝑖

2
+1) scheduled.

Then at the step𝑚 + 1, we have SWAP(𝑞0, 𝑞𝑖+1), SWAP(𝑞1, 𝑞𝑖), ...,

SWAP(𝑞 𝑖
2
, 𝑞 𝑖

2
+1). For each pair of qubits, their subscript adds up to

𝑖 + 1, which is𝑚/2 + 1.
At the step𝑚 + 2 where𝑚 is even and now (𝑚 + 2)/2 is odd, we

still let 𝑖 =𝑚/2. The qubit placement from left to right is:

𝑞 𝑖
2
+1, 𝑞 𝑖

2
, 𝑞 𝑖

2
+2, 𝑞 𝑖

2
−1,, 𝑞𝑖+1, 𝑞0, 𝑞𝑖+2, 𝑞𝑖+3, 𝑞𝑖+4,, 𝑞𝑛−1

At step𝑚 + 2, the operations are GT(𝑞0, 𝑞𝑖+2), GT(𝑞1, 𝑞𝑖+1), ...,
GT(𝑞 𝑖

2
, 𝑞 𝑖

2
+2). At step𝑚 + 3, it performs parallel swaps: SWAP(𝑞0,

𝑞𝑖+2), SWAP(𝑞1, 𝑞𝑖+1), ..., SWAP(𝑞 𝑖
2
, 𝑞 𝑖

2
+2). For each pair of qubits,

their subscript adds up to 𝑖 + 2, which is (𝑚 + 2)/2 + 1 or ⌊(𝑚 +
3)/2⌋ + 1.

Now the pattern is clear from Fig. 11. It repeats the two above sets

of operations, and each pair of qubits that perform GT or swap their

subscripts sum up to ⌊𝑚/2⌋ + 1 if𝑚 is the iteration number. The

generalized strategy can be applied to QFT with arbitrary number

of qubits. We describe it using an affine loop in Fig. 13 (a).

Note that the swap gate(s) in the last step is not necessary. But

we add it because it fits into the pattern, and also that after the

last swap, the physical connectivity graph of the logical qubits is

isomorphic to the one right before step 0.

367

Time-Optimal Qubit Mapping ASPLOS ’21, April 19–23, 2021, Virtual, USA

Our generalized solution for QFT on LNN is the same as that

found by Maslov [9]. However, that solution is found manually and

the author proved the solution is at most a constant factor away

from the optimal solution. Our qubit mapper at least confirmed

that this solution is optimal for small input size of QFT.

2D Architecture. Now we describe our generalized solution for

QFT on 2 × 𝑁 architecture (where 𝑁 = 𝑛/2). Maslov [9] does not

report a generalized solution for this, but predicts a lower bound of

3𝑛+𝑂 (1) circuit depth. Our solution is 3𝑛+𝑂 (1), which is the same

(asymptotically at the constant component). This is discovered for

the first time as far as we can tell for QFT on a 2D architecture.

We visualize the solution of QFT-8 on a 2x4 architecture in Fig.

12. We denote the physical qubit on the 𝑗-th column and the 𝑖-th

row as 𝑄𝑖, 𝑗 . Initial placement is a column major order such that

𝑞2𝑗+𝑖 → 𝑄𝑖, 𝑗 as shown in step (1) of Fig. 12.

With column major order, it takes 17 cycles, and the pattern is

generalizable. We also tried the row major order, it takes 21 cycles,

and the pattern is not generalizable. We only present the result of

column-major initial qubit placement here. It is worth mentioning

that we also tried the version which does not allow concurrent swap

and computation gates to run. It takes 19 cycles and is generizable

too. The generalized solution is shown later in this section.

With some analysis, it can be shown that the 2 × 𝑁 solution

is a non-trivial extended version of 1 × 𝑛. If we look at the qubit

layout at steps (2), (5), (8), (11), (14), and (17) in Fig. 12, placement

of pairs of qubits on (𝑄0,𝑖 , 𝑄1,𝑖) resembles placement of qubits on

𝑄𝑖 in LNN as the circuit makes progresses.

We let every three steps starting from step (2) in Fig. 12 form

one iteration (iteration is indexed from 0). Let iteration number be

𝑖 . If 𝑖 is even, at the first step of iteration 𝑖 and at the top row of the

qubit layout, the placement of qubits is as follows:

𝑞2(𝑖
2
) , 𝑞2(𝑖

2
+1) , 𝑞2(𝑖

2
−1) , 𝑞2(𝑖

2
+2) , .., 𝑞0, 𝑞2(𝑖+1) , 𝑞2(𝑖+2) , .., 𝑞2(𝑁−1)

We present it on purpose such that the subscript is a multiply of

2 and a number (the number need not to be integer).

The placement of logical qubits on the bottom of row is similar

except that 𝑞’s subscript increases by 1.

At the first step of the iteration 𝑖 , swap and GT are performed

simultaneously such that GT is on top row, and swap on the bottom

row. GT is on even-index qubits, and swap on odd-index qubits.

For GTs, they are on {𝑞2(𝑖
2
) , 𝑞2(𝑖

2
+1) }, {𝑞2(𝑖

2
−1) , 𝑞2(𝑖

2
+2) }, ...,

{𝑞0, 𝑞2(𝑖+1) }. And for swaps, they are on {𝑞2(𝑖
2
)+1, 𝑞2(𝑖

2
+1)+1},

{𝑞2(𝑖
2
−1)+1, 𝑞2(𝑖

2
+2)+1}, ..., {𝑞2∗0+1, 𝑞2(𝑖+1)+1}.

At the second step of iteration 𝑖 , the placement of logical qubits

on bottom row changes to the following:

𝑞𝑖+3, 𝑞𝑖+1, 𝑞𝑖+5, 𝑞𝑖−1, .., 𝑞2(𝑖+1)+1, 𝑞1, 𝑞2(𝑖+2)+1, .., 𝑞2(𝑁−1)+1

GT gates are performed between two qubits at the same column

on { 𝑞𝑖 , 𝑞𝑖+3 }, { 𝑞𝑖+2, 𝑞𝑖+1}, ..., {𝑞0, 𝑞2𝑖+3 }.

In the third step of the iteration 𝑖 , swaps and GT are performed

in parallel on top row and bottom row separately. This time, top

row performs swaps and bottom row performs GT. Swaps are

on {𝑞𝑖 , 𝑞𝑖+2}, {𝑞𝑖−2, 𝑞𝑖+4}, ...{𝑞0, 𝑞2∗(𝑖+1) }. GTs are on {𝑞𝑖+3, 𝑞𝑖+1},
{𝑞𝑖+5, 𝑞𝑖−1}, ...{𝑞2𝑖+3, 𝑞1}.

With these steps, the even iteration completes. It will go to an

odd iteration 𝑖 + 1. Before operations at iteration 𝑖 + 1 start, the

qubit layout at the top row now becomes

𝑞𝑖+2, 𝑞𝑖 , 𝑞𝑖+4, 𝑞𝑖−2, .., 𝑞2(𝑖+1) , 𝑞0, 𝑞2(𝑖+2) , .., 𝑞2(𝑁−1)

The steps in the even iteration complete a part of GTs such for

which the subscript summation of each pair of qubits is 2𝑖 + 2, and
all GTs such that the subscript summation 2𝑖 + 3, and a part of GTs

for which each pair’s subscripts sum to 2𝑖 + 4.
The odd iterations are similar. It is just that the pairs of qubits

should start from the second column from the left end of the grid

when doing GT or SWAP for the step 1 and step 3 in the iteration,

which we will not discuss in details here.

By repeating this pattern, all GT gates can be performed with

respect to the loop in Fig. 10 (b). It is just that one parallel iteration

in that loop might be split into two parts to be distributed into an

even iteration and an odd iteration.

Asymptotically, every two parallel layers in Fig. 10 (b) take 3

cycles using the transformation pattern in Fig. 12. The total number

of layers is 2𝑛 − 3 when the number of qubits is 𝑛. Our generalized

solution then takes 3𝑛 +𝑂 (1) cycles.
Our generalized solution is presented in Fig. 13 (b).

A constrained optimal solution for QFT on 2×N arch. In
some scenarios, it does not allow concurrent swaps and two-qubit

gates. Hence, we added the constraint that either GT gates or swap

gates in each cycle (but not both). Under this constraint, we solve

for an optimal solution. And we visualize such a solution of QFT-8

on a 2x4 architecture in Fig. 14.

Initial placement is column major as shown in Fig. 14 step (1).

Now amore elegant pattern shows and the depth is still 3𝑛+𝑂 (1).
We still form every three steps as one iteration (starting from step

1). We let iteration index be 𝑖 , starting from 0. For each iteration,

the first step only perform GTs and all GTs applied to qubits on

the same column. The number of GT performed increases by 1

at each iteration until about half way of the iterations and then

decreases by 1 at each iteration. The second step of each iteration

only performs swap gates. All swaps only happen to qubits on the

same row. The third step of each iteration performs GT gates only.

It is worth noting that the layout of these logical qubits form a

graph that is isomorphic to that at the beginning (as if the layout is

mirrored, similar to the case in LNN). This is a nice property of the

structured QFT transformation methods we discovered.

We show the pseudocode of this solution in Fig. 13 (c).

6.1.2 Building Block Circuits. We show results for the building

block circuits that include adders, modular function, and various

counters in Table 1. These are also the benchmarks used in the work

by Wille et al. [20] for gate-optimal qubit mapping. Our mapper

finds time-optimal solution very fast, usually in less than one second.

The quantum architecture is IBM’s QX2. Note that for this set

of benchmarks, both initial mapping and transformed circuit are

determined optimally, while for QFT experiments in Section 6.1.1,

we tried different initial mappings (row major and column major)

just for discovering the patterns.

In this table, ideal cycle refers to how many cycles the original

circuit would take on an ideal architecture where every two qubits

are connected; optimal cycle is the number of cycles we found for

the target architecture; mapper overhead is the time the mapper

368

ASPLOS ’21, April 19–23, 2021, Virtual, USA Chi Zhang, Ari B. Hayes, Longfei Qiu, Yuwei Jin, Yanhao Chen, and Eddy Z. Zhang

q0 q2 q4 q6

q1 q3 q5 q7

q0 q2 q4 q6

q1 q3 q5 q7

q0 q2 q4 q6

q1q3 q5 q7

q0 q2 q4 q6

q1q3 q5 q7

q0q2 q4 q6

q1q3 q5 q7

q0q2 q4 q6

q1q3 q5 q7

q0q2 q4 q6

q1q3 q5 q7

q0q2 q4 q6

q1q3 q5 q7

q0q2 q4 q6

q1q3q5 q7

q0q2 q4 q6

q1q3q5 q7

q0q2q4 q6

q1q3q5 q7

q0q2q4 q6

q1q3q5 q7

q0q2q4 q6

q1q3q5 q7

q0q2q4 q6

q1q3q5 q7

q0q2q4 q6

q1q3q5q7

q0q2q4 q6

q1q3q5q7

q0q2q4q6

q1q3q5q7

Two-qubit
gate:

SWAP:

Step (1)

Step (3)

Step (2) Step (5)

Step (4) Step (7)

Step (6) Step (9)

Step (8) Step (11)

Step (10) Step (13)

Step (12) Step (15)

Step (14)

Step (16)

Step (17)

Figure 12: Optimal scheme for QFT-8 with 2 × 4 qubits. Each sub-figure represents a step of the execution, which takes one
cycle. It also represents the state of the circuit at each cycle. There are in total 17 steps, and thus 17 cycles.

for i = 0; i++; 2*i+2 < 2n - 1 do

 for j = 0; j += 2; j < i do

 if (2i - j) < n && j < n, then GT(q [j], q [2i-j]);

 if (2i -j + 1) < n && j+1 <n, then SWAP(q[j+1], q[2i - j + 1]);

 for j = 0; j += 2; j < 2*i+1, do

 if (2i+1-j) <n && j < n, then GT(q[j], q[2i+1-j]);

 for j = 1; j += 2; j <= i , do

 if (2i+2-j) <n, then GT(q[j], q [2i + 2 - j]);

 if (2i+1-j) <n, then SWAP(q[j-1], q[2i+1-j]);

for m = 0; m+=2; m < 4n - 6 do

 k = (m/2)+1;

 for i= 0; i++; i < (k - i) do

 if i < n && k - i < n, then

 GT(q[i], q[k - I]);

 for i = 0; i++; i < (k - i) do

 if i < n && k - i < n, then

 SWAP(q[i], q[k - I]);

for i = 0; i++; i <= n-2 do

 for j = 0; j++; j < i, do

 if j < n && (2i-j) < n, then SWAP(q[j], q[2i-j]);

 for j = 0; j++; j < i do

 if j < n && (2i-j) < n, then GT(q[j], q[2i-j]);

 for j = 0; j++; j < i+1 do

 if j < n && (2i+1-j) < n, then GT(q[j], q[2i+1-j]);

(a) (b) (c)

Figure 13: Generalized solution for optimal schemes of QFT: (a) n-qubit QFT on LNN; (b) n-qubit QFT on 2×N architecture
where 𝑁 = 𝑛/2; (c) n-qubit QFT on 2×N architecture where swaps and CNOT cannot be mixed in one cycle.

takes to find the optimal solution. We implemented the mapper

using C++ and it was running on Intel Xeon E5-2620v2 CPU.

6.1.3 Comparison with OLSQ. In Table 2 we show our results com-

pared against OLSQ’s depth-optimal results [18] on the benchmarks

used in that paper. We correctly find the same optimal depths, but

are able to do so around 9 to 1500 times faster depending on the

benchmark. For this experiment, swaps were treated as having a

latency of 3 cycles, and all other gates as having a latency of 1 cycle.

When using our program we first tried to find an initial mapping

that could satisfy all CNOTs in the circuit without swaps – if that

failed, then we reran our mapper program with pure initial swaps

allowed, and added together the times in our overhead column of

Table 2. Our output circuit includes both a selected initial mapping

and inserted swaps using the approach defined in Section 5.3.

6.2 Approximate Analysis
We relax our model to solve for large benchmarks. We aim to find

a good solution within reasonable amount of time while not sacri-

ficing the search quality too much.

We approximate it in the following ways. When an original

gate is ready to execute with respect to dependence and coupling

constraints, we immediately schedule it. Thus we eliminate the

expanded nodes which do not schedule all ready original gates

implied by their parent node (the state node).

We also reduce the number of expanded nodes by not allowing

swaps that cause the executable gates on the CNOT frontier not

executable. By executable we meant the coupling and dependence

constraints are resolved. We rank the expanded nodes and only

push the top-𝑘 into the priority queue. When the priority queue

size reaches a threshold 𝑞, we cut it by a fixed number 𝑣 through

deleting the nodes that made the least progress in the circuit. If

we need a tie breaker, we just rank them by the cost function. We

choose the parameters 𝑘 , 𝑞, and 𝑣 as 10, 2000, and 1000.
We handle initial mapping on-the-fly in a greedy manner. Before

calculating the cost of a node, we look at the qubits in each of

its CNOT gates that are executable with respect to dependence

constraints: if one or both of its qubits are not yet mapped, then

we pick an assignment that minimizes their physical distance. If

at the end of the program there are any qubits that were never

369

Time-Optimal Qubit Mapping ASPLOS ’21, April 19–23, 2021, Virtual, USA

q0 q2 q4 q6

q1 q3 q5 q7

q2 q0 q4 q6

q1 q3 q5 q7

q0 q2 q4 q6

q1 q3 q5 q7

Step (1)

Step (2)

Step (3)

q0q2 q4 q6

q1 q3 q5 q7

q0q2 q4 q6

q1 q3 q5 q7

q0q2 q4 q6

q1q3 q5 q7

Step (4)

Step (5)

Step (6)

q0q2 q4 q6

q1q3 q5 q7

q0q2 q4 q6

q1q3 q5 q7

Step (7)

Step (8)

q0q2q4 q6

q1q3 q5 q7
Step (9)

q0q2q4 q6

q1q3 q5 q7

q0q2q4 q6

q1q3 q5 q7

q0q2q4 q6

q1q3q5 q7

Step (10)

Step (11)

Step (12)

q0q2q4 q6

q1q3q5 q7

q0q2q4 q6

q1q3q5 q7

q0q2q6 q4

q1q7q5 q3

Step (13)

Step (14)

Step (15)

q0q2q6 q4

q1q7q5 q3
Step (16)

q0q2q6 q4

q1q5q7 q3

q0q2q6 q4

q1q7q5 q3
Step (17)

Step (18)

q0q2q6 q4

q1q5q7 q3

Two-qubit
gate:

SWAP:

Step (19)

Figure 14: An alternative optimal scheme for QFT-8 with 2×4 qubits. Each sub-figure represents a step of the execution, which
takes one cycle. It also represents the state of the circuit at each cycle. There are in total 19 steps, and thus 19 cycles.

Table 1: Summary of optimal analysis onWille’s [20] bench-
marks for IBM QX2 architecture, with swap latency of 6 cy-
cles and CX latency of 2 cycles; n denotes the number of
qubits; Mapper Overhead, measured in seconds, is how long
it took to generate the mapping.

Name n

Gate Ideal Optimal Mapper

Count Cycle Cycle Overhead (s)

3_17_13 3 36 39 39 0.012

4gt11_82 5 27 38 40 0.044

4gt11_84 5 18 19 19 0.011

4gt13_92 5 66 64 64 0.014

4mod5-v0_19 5 35 37 45 0.075

4mod5-v0_20 5 20 21 27 0.052

4mod5-v1_22 5 21 22 28 0.053

4mod5-v1_24 5 36 36 42 0.085

alu-v0_27 5 36 35 40 0.043

alu-v1_28 5 37 37 42 0.029

alu-v1_29 5 37 36 41 0.052

alu-v2_33 5 37 36 41 0.036

alu-v3_34 5 52 53 59 0.314

alu-v3_35 5 37 37 42 0.038

alu-v4_37 5 37 37 42 0.038

ex-1_166 3 19 21 21 0.013

ham3_102 3 20 24 24 0.013

miller_11 3 50 52 52 0.016

mod5d1_63 5 22 24 34 0.076

mod5mils_65 5 35 37 46 0.115

qft_4 4 6 10 16 0.035

rd32-v0_66 4 34 36 41 0.045

rd32-v1_68 4 36 36 41 0.042

mapped (due to never being used in CNOT gates), then we assign

them arbitrarily.

This method scales better than the optimal search method. It is

non-optimal, but in practice it performs well.

6.2.1 Experiment Results. We evaluate our non-optimal mapper

with benchmarks selected from RevLib [21], IBM Qiskit [1], and

ScaffCC [6]. We also provide the ideal time of the circuit, which

Table 2: Comparison of our results against OLSQ’s depth-
optimal results; We let each gate take 1 cycle as the setup of
OLSQ [18]. Mapper overhead is measured in seconds. OLSQ
is using a different CPU for qubit mapper implementation
which is Intel Xeon E5-2699v3.

Name Arch Ideal Cycle

OLSQ Ours
Cycle Overhead Cycle Overhead

4gt13_92 ibmqx2 38 38 145.74 38 0.01

4mod5-v1_22 grid2by3 12 20 90.20 20 0.64

4mod5-v1_22 grid2by4 12 20 151.28 20 17.35

4mod5-v1_22 ibmqx2 12 15 21.60 15 0.03

adder grid2by3 11 11 10.95 11 0.03

adder grid2by4 11 11 13.45 11 0.01

adder ibmqx2 11 15 39.71 15 0.06

mod5mils_65 ibmqx2 21 24 87.76 24 0.05

or ibmqx2 8 8 3.55 8 0.01

qaoa5 ibmqx2 14 14 10.41 14 0.01

queko_05_0 aspen-4 5 5 68.89 5 0.01

queko_10_3 aspen-4 10 10 592.91 10 1.02

queko_15_1 aspen-4 15 15 4912.35 15 26.70

assumes an all-to-all qubit connection in the hardware. The infor-

mation of these benchmarks is provided in Table 3.

We compare our work with two best known qubit mapping

solutions [23] (denoted as Zulehner) and the Sabre qubit mapper

from [8] (denoted as Sabre). It is worth mentioning that our ap-

proach can take any gate latency as input parameters and generate

transformed circuits based on the input. To make evaluation results

as close to real machines as possible. We use the results from the

study by [4], where different types of quantum architecture are

investigated, and the study reveals that two-qubit gate usually takes

twice as much time as single-qubit gate. Hence we let single-qubit

gate take 1 cycle and two-qubit CNOT gate take 2 cycles in our

experiments. We also let a SWAP take 6 cycles as the IBM architec-

ture uses bidirectional link and 3 CNOTs to implement one SWAP.

The time is reported as the total number of executed cycles. We

use IBM’s 20-qubit Q20 Tokyo architecture [8] as the underlying

quantum hardware.

370

ASPLOS ’21, April 19–23, 2021, Virtual, USA Chi Zhang, Ari B. Hayes, Longfei Qiu, Yuwei Jin, Yanhao Chen, and Eddy Z. Zhang

Our approach is scalable up to hundreds of thousands of gates.

Results are shown in Table 3. The results are not optimal, but still

show significant advantages over the state-of-the-art qubit mappers.

It reduces the execution time of the transformed quantum circuits.

Speedup ranges from 0.99X to 1.36X and the average is 1.21X. The

average speedup of our scheme over Sabre is 1.23X and the average

speedup of our scheme over Zulehner is 1.18X.

Table 3: Summary results of approximate analysis on large
benchmarks; n denotes the number of qubits; Circuit time
is calculated in the unit of cycles.

Benchmark Cycle
Name n Gate Count Ideal Cycle Sabre Zulehner Ours
cm82a_208 8 650 571 752 1011 759

rd53_251 8 1291 1203 1961 1956 1779

urf2_277 8 20112 19698 40533 36500 31090

urf1_278 9 54766 53256 105984 95763 83226

hwb8_113 9 69380 64758 119930 115767 93357

urf1_149 9 184864 172518 335230 303697 264752

qft_10 10 200 97 226 193 181

rd73_252 10 5321 4829 9194 8431 7267

sqn_258 10 10223 9176 18055 16552 13845

z4_268 11 3073 2756 5250 5117 4271

life_238 11 22445 20867 39340 37944 33366

9symml 11 34881 32084 63339 56413 48606

sqrt8_260 12 3009 2779 5645 4831 4457

cycle10_2 12 6050 5662 10972 10659 9605

rd84_253 12 13658 12176 24860 23357 18225

adr4_197 13 3439 3088 5732 6005 4704

root_255 13 17159 14799 29511 27269 23841

dist_223 13 38046 32968 66791 62879 54905

cm42a_207 14 1776 1574 2473 2857 2186

pm1_249 14 1776 1574 2591 2857 2186

cm85a_209 14 11414 10630 19540 18393 16204

square_root 15 7630 6367 12374 11922 9311

ham15_107 15 8763 8092 15388 13767 12341

dc2_222 15 9462 8759 16947 15266 12945

inc_237 16 10619 9790 18250 17610 14804

mlp4_245 16 18852 17258 31836 30285 27214

7 RELATEDWORK
Early studies on qubit mapping problem focus on linear nearest

neighbor architectures, that is when qubits are placed in a one

dimensional grid, and one qubit has at most two neighbors. In this

type of architecture, Shafei et al. [13] have modeled the qubit map-

ping problem as constraint solving problem and use satisfiability

(SAT) solvers to solve for qubit mapping. It works well when the

number of qubits is small and the search space is small. Maslov [9]

has obtained and proved optimal qubit mapping for the quantum

fourier transform (QFT) algorithm for LNN.

As quantum computers with more complex connectivity struc-

ture are built, a larger number of studies investigate the qubit map-

ping problem. However, most of these studies [8, 16, 17, 20, 22, 23]

focus on minimizing the number of inserted swap gates and en-

hancing the parallelism among the swaps, but not the time of the

entire circuit. Zulehner et al. [23] proposes a systematic A* algo-

rithm for optimizing the number of swap gates for a fixed layer

of CNOT gates that need to run concurrently. It pre-processes the

circuit by partitioning the circuit into different layers, and solve the

mapping problem layer by layer. Li et al. [8] use a frontier to keep

track of the CNOT gates that cannot be scheduled on the fly and

formulates a multi-objective function for ranking different SWAP

insertion strategies. Li et al. [8] has briefly discussed the trade-off

between the inserted SWAP number and the depth of the circuit,

but not systematically addressed the time-optimal problem. Siraichi

et al. [16] notes the similarity between the swap insertion prob-

lem and the subgraph isomorphism problem, which is essentially

fitting a program qubit interaction graph into the physical qubit

coupling graph. But they do not provide optimal solutions. The

studies [10, 19] observed the variability of qubit error rates in IBM

quantum computer and develop variability-aware qubit mapping

strategies.

The study that is most relevant to ours is OLSQ by Tan et al. [18].
OLSQ is a constrained based solver. It solves for the time coordinate

of each gate (including swap gate) and the qubit mapping at every

time coordinate, and the objective function is the total depth. It is

optimal with respect to a depth upper-bound. It tests different upper

bounds of the circuit depth until it finds a solution. If the preset

depth upper-bound is smaller than the actual optimal depth, it will

not return a solution. They start from the the longest weighted path

𝑇 in the DAG, since a circuit runs at least 𝑇 cycles. If it does not

return a solution with depth ≤ T, it changes the upper bound to

T+1. If with T+1, it is still unsatisfiable, it goes to T+2, T+3, and so

on until a feasible solution is found. While their method can find

optimal solutions, it may suffer from scalability issues when the

optimal circuit time is not close to T. Therefore they geometrically

increase T each time by (1 + 𝜖)x until an optimal solution is found.

Our model explicitly solves for an optimal solution and does not

impose any constraints.

The study by Childs et al. [3] aims to minimize the depth. But

it minimizes the depth of inserted swaps. Each set of co-running

swaps is modeled as a graph matching (as no two parallel swaps

share a qubit), then it tries to find a minimal sequence of matchings

to achieve the desired permutation. Their theoretical model does not

consider the parallelism between inserted swaps and original gates.

Lao et al. [7] considers the parallelism between inserted swaps ad

original gates, but their approach is not theoretically optimal.

8 CONCLUSION
The physical layout of contemporary quantum devices imposes

limitations for mapping a high level quantum program to the hard-

ware. It is critical to develop an efficient qubit mapper. Most existing

studies aim to reduce the gate count but are oblivious to the time of

the transformed circuit. This paper presents a time-optimal qubit

mapping model scheme. Experiment results show that our proposed

solution generates hardware-compliant circuits with minimal cir-

cuit time with much less overhead compared with state-of-the-art

qubit mapping approaches.

ACKNOWLEDGEMENT
We thank Ali Javadi-Abhari for being our shepherd and the anony-

mous reviewers for their constructive comments. This work is

supported by grants from Rutgers Research Council and NSF-CCF-

1628401. Any opinions, findings, conclusions, or recommendations

expressed in this material are those of the authors and do not nec-

essarily reflect the views of our sponsors.

371

Time-Optimal Qubit Mapping ASPLOS ’21, April 19–23, 2021, Virtual, USA

q0 q2 q4 q6

q1 q3 q5 q7

q0 q2 q4 q6

q1 q3 q5 q7

q0 q2 q4 q6

q1q3 q5 q7

q0 q2 q4 q6

q1q3 q5 q7

q0q2 q4 q6

q1q3 q5 q7

q0q2 q4 q6

q1q3 q5 q7

q0q2 q4 q6

q1q3 q5 q7

q0q2 q4 q6

q1q3 q5 q7

q0q2 q4 q6

q1q3q5 q7

q0q2 q4 q6

q1q3q5 q7

q0q2q4 q6

q1q3q5 q7

q0q2q4 q6

q1q3q5 q7

q0q2q4 q6

q1q3q5 q7

q0q2q4 q6

q1q3q5 q7

q0q2q4 q6

q1q3q5q7

q0q2q4 q6

q1q3q5q7

q0q2q4q6

q1q3q5q7

CNOT:

SWAP:

Step (1)

Step (3)

Step (2) Step (5)

Step (4) Step (7)

Step (6) Step (9)

Step (8) Step (11)

Step (10) Step (13)

Step (12) Step (15)

Step (14)

Step (16)

Step (17)

Figure 15: One possible solution for QFT-8 on 2×4 allowing two-qubit gate and swap on one cycle.

X

X

SWAP

Two-qubit
Gate

Q0

Q1

Q2

Q3

Q4

Q5

X

X X

X

X

X X

X

X

X X

XX

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

L1 L2 L3 L4 L5 L6 L7 L8 L9

Figure 16: One possible solution for QFT-6 on LNN.

A PROOF OF OPTIMALITY
Lemma A.1. For each state node 𝑃 , the heuristic cost function ℎ(𝑃)

is a lower bound of the length of all paths from 𝑃 to a terminal node
in the search graph.

Proof. Let 𝐺𝑟𝑒𝑚 = (𝑉𝑟𝑒𝑚, 𝐸𝑟𝑒𝑚) be the dependency graph of

the remaining circuit. For each gate 𝑔 ∈ 𝑉𝑟𝑒𝑚 , let 𝑡∗
𝑚𝑖𝑛

(𝑔) be the
length of the actual shortest path from 𝑃 to any state node where

gate 𝑔 has already been scheduled to execute. In the next few para-

graphs we will prove that 𝑡𝑚𝑖𝑛 (𝑔) ≤ 𝑡∗
𝑚𝑖𝑛

(𝑔) for every gate 𝑔. Let 𝑋
be any terminal node in the search graph, and let 𝑡∗ be the distance
between 𝑃 and 𝑋 . Since each gate must finish execution at state 𝑋 ,

for each gate 𝑔 we have 𝑡∗ ≥ 𝑡∗
𝑚𝑖𝑛

(𝑔) + 𝑙𝑒𝑛(𝑔). Together, for each
gate 𝑔 we have

𝑡𝑚𝑖𝑛 (𝑔) + 𝑙𝑒𝑛(𝑔) ≤ 𝑡∗𝑚𝑖𝑛 (𝑔) + 𝑙𝑒𝑛(𝑔) ≤ 𝑡∗

Thus ℎ(𝑃) = max𝑔 𝑡𝑚𝑖𝑛 (𝑔) + 𝑙𝑒𝑛(𝑔) ≤ 𝑡∗. This shows that ℎ(𝑃) is
a lower bound on the length from 𝑃 to any terminal node.

Base case: If 𝑔 is a single-qubit gate that has no predecessors,

then 𝑡∗
𝑚𝑖𝑛

(𝑔) = 0, since it can be scheduled to execute immediately.

Note that our definition of 𝐺𝑟𝑒𝑚 includes gates which are only

partially executed, so gates which have no predecessors do not

need to wait current gates to finish.

Inductive case: Suppose gate 𝑔 depends on a number of other

gates. If𝑔 is a two-qubit gate then we also have to consider potential

SWAPs before 𝑔, even if 𝑔 has no apparent predecessor in 𝐺𝑟𝑒𝑚 .

We will give two lower bounds on 𝑡∗
𝑚𝑖𝑛

(𝑔) and show that 𝑡𝑚𝑖𝑛 (𝑔)
is equal to the larger of the two bounds.

The first bound is derived from the immediate predecessors of

𝑔. If ℎ1, ℎ2, · · · are the immediate predecessors of 𝑔 in 𝐺𝑟𝑒𝑚 , then

𝑔 cannot be scheduled until all these gates have finished. Thus

𝑡∗
𝑚𝑖𝑛

(𝑔) ≥ 𝑡∗
𝑚𝑖𝑛

(ℎ𝑖) + 𝑙𝑒𝑛(ℎ𝑖) for each gate ℎ𝑖 . This gives the first

bound

𝑡∗𝑚𝑖𝑛 (𝑔) ≥ max
𝑖

𝑡∗𝑚𝑖𝑛 (ℎ𝑖) + 𝑙𝑒𝑛(ℎ𝑖)

The second bound comes from gates which operate on the some

same qubit as 𝑔. Suppose 𝑔 involves two qubits 𝑞𝑎 , 𝑞𝑏 . Let𝐻𝑎 be the

set of all gates on 𝑞𝑎 which are direct or indirect predecessors of

𝑔. Since they all operate on the same qubit, they must be executed

in the order they appear in the circuit. Suppose this ordering is

ℎ1, ℎ2, · · · , ℎ𝑛 . We have

𝑡∗𝑚𝑖𝑛 (ℎ2) ≥ 𝑡∗𝑚𝑖𝑛 (ℎ1) + 𝑙𝑒𝑛(ℎ1)

𝑡∗𝑚𝑖𝑛 (ℎ3) ≥ 𝑡∗𝑚𝑖𝑛 (ℎ2) + 𝑙𝑒𝑛(ℎ2) ≥ 𝑡∗𝑚𝑖𝑛 (ℎ1) + 𝑙𝑒𝑛(ℎ1) + 𝑙𝑒𝑛(ℎ2)
.
.
.

By inductionwe have 𝑡∗
𝑚𝑖𝑛

(𝑔) ≥ 𝑡∗
𝑚𝑖𝑛

(ℎ1)+
∑
𝑖 𝑙𝑒𝑛(ℎ𝑖) ≥

∑
𝑖 𝑙𝑒𝑛(ℎ𝑖).

Now suppose we place 𝑟 SWAPs before gate 𝑔 on qubit 𝑞𝑎 . They

also cannot execute simultaneously with any of the gates in 𝐻𝑎 .

Thus

𝑡∗𝑚𝑖𝑛 (𝑔) ≥ 𝑟 · 𝑙𝑒𝑛(𝑆𝑊𝐴𝑃) +
∑
ℎ∈𝐻𝑎

𝑙𝑒𝑛(ℎ) = 𝑢1

Similarly we may define the set 𝐻𝑏 , and if we place 𝑠 SWAPs on 𝑞𝑏
before 𝑔 we have

𝑡∗𝑚𝑖𝑛 (𝑔) ≥ 𝑠 · 𝑙𝑒𝑛(𝑆𝑊𝐴𝑃) +
∑
ℎ∈𝐻𝑏

𝑙𝑒𝑛(ℎ) = 𝑢2

Let𝑑 (𝑎, 𝑏) be the distance between qubit𝑞𝑎, 𝑞𝑏 in the qubit mapping

𝜋𝑟𝑒𝑚 . Then at least 𝑑 (𝑎, 𝑏) − 1 SWAPs are needed before gate 𝑔,

so 𝑟 + 𝑠 ≥ 𝑑 (𝑎, 𝑏) − 1. Since 𝑢1, 𝑢2 increases linearly with 𝑟, 𝑠 ,

we fix 𝑟 + 𝑠 = 𝑑 (𝑎, 𝑏) − 1 to minimize them. We choose the pair

(𝑟, 𝑠) such that max{𝑢1, 𝑢2} is minimized. We take the minimized

max{𝑢1, 𝑢2} to be the second bound.

In the above we have derived two lower bounds on 𝑡∗
𝑚𝑖𝑛

(𝑔).
If we compare them with the definition of 𝑡𝑚𝑖𝑛 (𝑔), we see that

𝑡𝑚𝑖𝑛 (𝑔) is exactly equal to the larger of the two bounds. Therefore

𝑡𝑚𝑖𝑛 (𝑔) ≤ 𝑡∗
𝑚𝑖𝑛

(𝑔). This finishes the proof. □

B MULTIPLE OPTIMAL SOLUTIONS
In certain benchmarks, multiple depth-optimal solutions exist. Our

tool can be easily tuned to find all of them. Our algorithmwaits until

the first optimal solution is found. Typically in A*, one terminate

the algorithm as long as the first solution is found. But it is not

necessary. We then record the depth of the first optimal solution,

372

ASPLOS ’21, April 19–23, 2021, Virtual, USA Chi Zhang, Ari B. Hayes, Longfei Qiu, Yuwei Jin, Yanhao Chen, and Eddy Z. Zhang

and continue to run the extract-expand-push process as shown

in Fig. 6 and report more solutions. We stop reporting solutions

whenever an extracted node from the queue suggests a solution

with a larger depth than the optimal one. At this time, our algorithm

has found all solutions.

We need multiple optimal solutions because not all optimal so-

lutions for small circuits have a recurring pattern. Hence, it is

necessary to generate all optimal solutions and discover the one

with recurring pattern to generalize to larger circuits. For instance,

for QFT-8 on 2×4 architecture (without allowing CNOT and swap at

the same cycle) only one solution among the eight optimal solutions

shows the pattern in Fig. 14.

Another issue that arises when we try to manually generalize a

solution is that the solution circuit might need slight transformation.

It is possible that an optimal solution returned by our tool has

cancelable swap gates (which usually involves multiple qubits and

cannot be automatically found like cyclic swaps). However, it is

easy to discover them when visualizing the small solution circuit.

Further, certain gates can be scheduled earlier or later without

affecting the overall mapping or depth. We show an example in Fig.

15. As can be seen in step (5), the two-qubit gate for {𝑞2, 𝑞3} can be

moved to step (6) without affecting the overall depth. Similarly, in

step (11), the two-qubit gate or {𝑞4, 𝑞5} can be moved to step (12).

This transformation is inferred from step (3) and (9). At this point,

we are doing the generalization/inference of recurring patterns

manually, but this could potentially done automatically. We leave

it as our future work.

Last but not least, if a swap is followed by a two-qubit gate, the

two-qubit can bemoved in front of the swap by reversing the control

and target, and the transformed circuit is equivalent. Similarly when

a two-qubit is followed by a swap. We show a solution for QFT-6

on LNN in Fig. 16, where if in layers L2 to L8, the order of swap

and two-qubit gate can be swapped to be consistent with L1 and

L9, the entire solution is the same as we show in Fig. 2.

REFERENCES
[1] Héctor Abraham, AduOffei, Ismail Yunus Akhalwaya, Gadi Aleksandrowicz,

Thomas Alexander, Gadi Alexandrowics, Eli Arbel, Abraham Asfaw, Carlos

Azaustre, AzizNgoueya, Panagiotis Barkoutsos, George Barron, Luciano Bello,

Yael Ben-Haim, Daniel Bevenius, Lev S. Bishop, Sorin Bolos, Samuel Bosch,

Sergey Bravyi, David Bucher, Artemiy Burov, Fran Cabrera, Padraic Calpin, Lau-

ren Capelluto, Jorge Carballo, Ginés Carrascal, Adrian Chen, Chun-Fu Chen,

Richard Chen, Jerry M. Chow, Christian Claus, Christian Clauss, Abigail J. Cross,

Andrew W. Cross, Simon Cross, Juan Cruz-Benito, Chris Culver, Antonio D.

Córcoles-Gonzales, Sean Dague, Tareq El Dandachi, Matthieu Dartiailh, Davide-

Frr, Abdón Rodríguez Davila, Anton Dekusar, Delton Ding, Jun Doi, Eric Drech-

sler, Drew, Eugene Dumitrescu, Karel Dumon, Ivan Duran, Kareem EL-Safty,

Eric Eastman, Pieter Eendebak, Daniel Egger, Mark Everitt, Paco Martín Fernán-

dez, Axel Hernández Ferrera, Albert Frisch, Andreas Fuhrer, MELVIN GEORGE,

Julien Gacon, Gadi, Borja Godoy Gago, Claudio Gambella, Jay M. Gambetta,

Adhisha Gammanpila, Luis Garcia, Shelly Garion, Austin Gilliam, Juan Gomez-

Mosquera, Salvador de la Puente González, Jesse Gorzinski, Ian Gould, Donny

Greenberg, Dmitry Grinko, Wen Guan, John A. Gunnels, Mikael Haglund, Is-

abel Haide, Ikko Hamamura, Vojtech Havlicek, Joe Hellmers, Łukasz Herok,

Stefan Hillmich, Hiroshi Horii, Connor Howington, Shaohan Hu, Wei Hu, Haruki

Imai, Takashi Imamichi, Kazuaki Ishizaki, Raban Iten, Toshinari Itoko, JamesSea-

ward, Ali Javadi, Ali Javadi-Abhari, Jessica, Kiran Johns, Tal Kachmann, Naoki

Kanazawa, Kang-Bae, Anton Karazeev, Paul Kassebaum, Spencer King, Knab-

berjoe, Arseny Kovyrshin, Rajiv Krishnakumar, Vivek Krishnan, Kevin Krsulich,

Gawel Kus, Ryan LaRose, Raphaël Lambert, Joe Latone, Scott Lawrence, Dennis

Liu, Peng Liu, Yunho Maeng, Aleksei Malyshev, Jakub Marecek, Manoel Marques,

Dolph Mathews, Atsushi Matsuo, Douglas T. McClure, Cameron McGarry, David

McKay, Dan McPherson, Srujan Meesala, Martin Mevissen, Antonio Mezzacapo,

Rohit Midha, Zlatko Minev, Abby Mitchell, Nikolaj Moll, Michael Duane Moor-

ing, Renier Morales, Niall Moran, MrF, Prakash Murali, Jan Müggenburg, David

Nadlinger, Ken Nakanishi, Giacomo Nannicini, Paul Nation, Edwin Navarro,

Yehuda Naveh, Scott Wyman Neagle, Patrick Neuweiler, Pradeep Niroula, Hassi

Norlen, Lee James O’Riordan, Oluwatobi Ogunbayo, Pauline Ollitrault, Steven

Oud, Dan Padilha, Hanhee Paik, Simone Perriello, Anna Phan, Francesco Piro,

Marco Pistoia, Alejandro Pozas-iKerstjens, Viktor Prutyanov, Daniel Puzzuoli,

Jesús Pérez, Quintiii, Rudy Raymond, Rafael Martín-Cuevas Redondo, Max Reuter,

Julia Rice, Diego M. Rodríguez, RohithKarur, Max Rossmannek, Mingi Ryu, Thar-

rmashastha SAPV, SamFerracin, Martin Sandberg, Hayk Sargsyan, Ninad Sathaye,

Bruno Schmitt, Chris Schnabel, Zachary Schoenfeld, Travis L. Scholten, Eddie

Schoute, Joachim Schwarm, Ismael Faro Sertage, Kanav Setia, Nathan Shammah,

Yunong Shi, Adenilton Silva, Andrea Simonetto, Nick Singstock, Yukio Siraichi,

Iskandar Sitdikov, Seyon Sivarajah, Magnus Berg Sletfjerding, John A. Smolin,

Mathias Soeken, Igor Olegovich Sokolov, SooluThomas, Dominik Steenken,

Matt Stypulkoski, Jack Suen, Shaojun Sun, Kevin J. Sung, Hitomi Takahashi,

Ivano Tavernelli, Charles Taylor, Pete Taylour, Soolu Thomas, Mathieu Tillet,

Maddy Tod, Enrique de la Torre, Kenso Trabing, Matthew Treinish, TrishaPe,

Wes Turner, Yotam Vaknin, Carmen Recio Valcarce, Francois Varchon, Almu-

dena Carrera Vazquez, Desiree Vogt-Lee, Christophe Vuillot, James Weaver, Rafal

Wieczorek, Jonathan A. Wildstrom, Robert Wille, Erick Winston, Jack J. Woehr,

Stefan Woerner, Ryan Woo, Christopher J. Wood, Ryan Wood, Stephen Wood,

Steve Wood, James Wootton, Daniyar Yeralin, Richard Young, Jessie Yu, Christo-

pher Zachow, Laura Zdanski, Christa Zoufal, Zoufalc, a matsuo, adekusar drl,

azulehner, bcamorrison, brandhsn, chlorophyll zz, dan1pal, dime10, drholmie, el-

frocampeador, faisaldebouni, fanizzamarco, gadial, gruu, jliu45, kanejess, klinvill,

kurarrr, lerongil, ma5x, merav aharoni, michelle4654, ordmoj, sethmerkel, strick-

roman, sumitpuri, tigerjack, toural, vvilpas, welien, willhbang, yang.luh, yelojakit,

and yotamvakninibm. 2019. Qiskit: An Open-source Framework for Quantum

Computing. https://doi.org/10.5281/zenodo.2562110

[2] Mehdi Bozzo-Rey and Robert Loredo. 2018. Introduction to the IBM Q Experi-

ence and Quantum Computing. In Proceedings of the 28th Annual International
Conference on Computer Science and Software Engineering (Markham, Ontario,

Canada) (CASCON ’18). IBM Corp., USA, 410–412.

[3] AndrewMChilds, Eddie Schoute, and CemMUnsal. 2019. Circuit transformations

for quantum architectures. arXiv preprint arXiv:1902.09102 (2019).
[4] Haowei Deng, Yu Zhang, and Quanxi Li. 2020. CODAR: A Contextual Duration-

Aware Qubit Mapping for Various NISQ Devices. arXiv preprint arXiv:2002.10915
(2020).

[5] Lov K. Grover. 1996. A Fast Quantum Mechanical Algorithm for Database

Search. In Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of
Computing (Philadelphia, Pennsylvania, USA) (STOC ’96). ACM, New York, NY,

USA, 212–219. https://doi.org/10.1145/237814.237866

[6] Ali JavadiAbhari, Shruti Patil, Daniel Kudrow, JeffHeckey, Alexey Lvov, Frederic T

Chong, and Margaret Martonosi. 2014. ScaffCC: a framework for compilation

and analysis of quantum computing programs. In Proceedings of the 11th ACM
Conference on Computing Frontiers. ACM, 1.

[7] Lingling Lao, Hans van Someren, Imran Ashraf, and Carmen G. Almudever. 2020.

Timing and resource-aware mapping of quantum circuits to superconducting

processors. arXiv:1908.04226 [quant-ph]

[8] Gushu Li, Yufei Ding, and Yuan Xie. 2019. Tackling the qubit mapping problem

for NISQ-era quantum devices. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems. ACM, 1001–1014.

[9] Dmitri Maslov. 2007. Linear depth stabilizer and quantum Fourier transforma-

tion circuits with no auxiliary qubits in finite-neighbor quantum architectures.

Physical Review A 76, 5 (Nov 2007). https://doi.org/10.1103/physreva.76.052310

[10] Prakash Murali, Jonathan M. Baker, Ali Javadi-Abhari, Frederic T. Chong, and

Margaret Martonosi. 2019. Noise-Adaptive Compiler Mappings for Noisy

Intermediate-Scale Quantum Computers. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages
and Operating Systems (Providence, RI, USA) (ASPLOS ’19). ACM, New York, NY,

USA, 1015–1029. https://doi.org/10.1145/3297858.3304075

[11] Michael A Nielsen and Isaac Chuang. 2002. Quantum computation and quantum

information.

[12] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou,

Peter J. Love, Alán Aspuru-Guzik, and Jeremy L. O’Brien. 2014. A variational

eigenvalue solver on a photonic quantum processor. In Nature Communications,
Vol. 5. 4213. https://doi.org/10.1145/237814.237866

[13] Alireza Shafaei, Mehdi Saeedi, and Massoud Pedram. 2014. Qubit placement to

minimize communication overhead in 2D quantum architectures. In 2014 19th
Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, 495–500.

[14] Peter W Shor. 1994. Algorithms for quantum computation: Discrete logarithms

and factoring. In Proceedings 35th annual symposium on foundations of computer
science. Ieee, 124–134.

[15] Peter W. Shor. 1997. Polynomial-Time Algorithms for Prime Factorization and

Discrete Logarithms on a Quantum Computer. SIAM J. Comput. 26, 5 (Oct. 1997),
1484–1509. https://doi.org/10.1137/S0097539795293172

373

https://doi.org/10.5281/zenodo.2562110
https://doi.org/10.1145/237814.237866
https://arxiv.org/abs/1908.04226
https://doi.org/10.1103/physreva.76.052310
https://doi.org/10.1145/3297858.3304075
https://doi.org/10.1145/237814.237866
https://doi.org/10.1137/S0097539795293172

Time-Optimal Qubit Mapping ASPLOS ’21, April 19–23, 2021, Virtual, USA

[16] Marcos Yukio Siraichi, Vinícius Fernandes dos Santos, Caroline Collange, and

Fernando Magno Quintão Pereira. 2019. Qubit Allocation as a Combination

of Subgraph Isomorphism and Token Swapping. Proc. ACM Program. Lang. 3,
OOPSLA, Article 120 (Oct. 2019), 29 pages. https://doi.org/10.1145/3360546

[17] Marcos Yukio Siraichi, Vinícius Fernandes dos Santos, Sylvain Collange, and

Fernando Magno Quintão Pereira. 2018. Qubit allocation. In Proceedings of
the 2018 International Symposium on Code Generation and Optimization. ACM,

113–125.

[18] Bochen Tan and Jason Cong. 2020. Optimal Layout Synthesis for Quantum

Computing. In Proceedings of the 39th International Conference on Computer-Aided
Design (Virtual Event, USA) (ICCAD ’20). Association for Computing Machinery,

NewYork, NY, USA, Article 137, 9 pages. https://doi.org/10.1145/3400302.3415620

[19] Swamit S. Tannu and Moinuddin K. Qureshi. 2019. Not All Qubits Are Created

Equal: A Case for Variability-Aware Policies for NISQ-Era Quantum Computers.

In Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems (Providence, RI, USA)

(ASPLOS ’19). ACM, New York, NY, USA, 987–999. https://doi.org/10.1145/

3297858.3304007

[20] Robert Wille, Lukas Burgholzer, and Alwin Zulehner. 2019. Mapping quantum

circuits to IBM QX architectures using the minimal number of SWAP and H

operations. In Proceedings of the 56th Annual Design Automation Conference 2019.
ACM, 142.

[21] Robert Wille, Daniel Große, Lisa Teuber, Gerhard W Dueck, and Rolf Drechsler.

2008. RevLib: An online resource for reversible functions and reversible circuits.

In 38th International Symposium on Multiple Valued Logic (ismvl 2008). IEEE,
220–225.

[22] Alwin Zulehner, Stefan Gasser, and Robert Wille. 2017. Exact Global Reordering

for Nearest Neighbor Quantum Circuits Using A∗. In International Conference on
Reversible Computation. Springer, 185–201.

[23] Alwin Zulehner, Alexandru Paler, and Robert Wille. 2018. Efficient mapping of

quantum circuits to the IBM QX architectures. In 2018 Design, Automation & Test
in Europe Conference & Exhibition (DATE). IEEE, 1135–1138.

374

https://doi.org/10.1145/3360546
https://doi.org/10.1145/3400302.3415620
https://doi.org/10.1145/3297858.3304007
https://doi.org/10.1145/3297858.3304007

	Abstract
	1 Introduction
	2 Background
	2.1 Quantum Gates
	2.2 Qubit Mapping Problem

	3 Motivation
	4 Time-Optimal Mapping Framework
	4.1 Search Space
	4.2 Guided Search Framework

	5 Optimality Guarantee
	5.1 Admissible Cost Function
	5.2 Optimality
	5.3 Initial Mapping

	6 Analysis
	6.1 Exact Analysis
	6.2 Approximate Analysis

	7 Related Work
	8 Conclusion
	A Proof of Optimality
	B Multiple Optimal Solutions
	References

